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Abstract: A dual-resolution, hybrid, three-dimensional ensemble-variational (3DEnVAR) data assim-
ilation method combining static and ensemble background error covariances is used to assimilate
radar data, and pseudo-water vapor observations to improve short-term severe weather forecasts
with the Weather Research and Forecast (WRF) model. The higher-resolution deterministic forecast
and the lower-resolution ensemble members have 3 and 9 km horizontal resolution, respectively.
The water vapor pseudo-observations are derived from the combined use of total lightning data and
cloud top height from the Fengyun-4A(FY-4A) geostationary satellite. First, a set of single-analysis
experiments are conducted to provide a preliminary performance evaluation of the effectiveness
of the hybrid method for assimilating multisource observations; second, a set of cycling analysis
experiments are used to evaluate the forecast performance in convective-scale high-frequency analy-
sis; finally, different hybrid coefficients are tested in both the single and cycling experiments. The
single-analysis results show that the combined assimilation of radar data and water vapor pseudo-
observations derived from the lightning data is able to generate reasonable vertical velocity, water
vapor and hydrometeor adjustments, which help to trigger convection earlier in the forecast/analysis
and reduce the spin-up time. The dual-resolution hybrid 3DEnVAR method is able to adjust the wind
fields and hydrometeor variables with the assimilation of lightning data, which helps maintain the
triggered convection longer and partially suppress spurious cells in the forecast compared with the
three-dimensional variational (3DVAR) method. A cycling analysis that introduced a large number of
observations with more frequent small adjustments is able to better resolve the observed convective
events than a single-analysis approach. Different hybrid coefficients can affect the forecast results,
either in the single deterministic or cycling analysis experiments. Overall, we found that a static
coefficient of 0.4 and an ensemble coefficient of 0.6 yields the best forecast skill for this event.

Keywords: data assimilation; lightning and radar data; dual-resolution hybrid 3DEnVAR; convec-
tive forecast

1. Introduction

The accuracy and timeliness of severe weather forecasts are critical to safeguard life
and property. Numerical weather prediction (NWP) models still face many challenges
in accurately forecasting high-impact weather events such as the existence of biases and
errors contained in the initial conditions, which are often derived or downscaled from
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larger-scale model data [1,2]. Reducing the initial condition biases and errors through data
assimilation is thus crucial to improve forecast skill [3–5].

Lightning data from ground-based networks and spaceborne optical instruments
are able to identify areas of deep, mixed-phase convection [6–10]. The most tornadic
storms (80% or more) have an increase in total flash rates near the time of the tornado,
and the increase in total flash rates is often dominated by intracloud flashes [6]. The
comparison analysis of lightning data and radar echoes suggests that lightning data can
be used to determine the convective activity and its development probability and inten-
sity [7]. The Geostationary Lightning Mapper (GLM) and Lightning Mapping Imager (LMI)
mounted on the Geostationary Operational Environmental Satellite R-series (GOES-R) and
Fengyun-4A (FY-4A) are useful for early predictions of storms and severe convection events,
respectively [9,10]. Lightning has been employed to estimate convective precipitation as
well [11–13]. Relying on the extensive lightning observation network and on the robust
association between lightning and deep convection, the use of lightning data assimilation
(LDA) is very useful to improve severe convective weather forecasting. The basic concept
of LDA is to adjust selected model state variables known to be associated or well-correlated
with lightning.

In most LDA research, the model state variables, such as thermal, dynamic and
mass fields are usually adjusted. In the thermal field adjustment schemes, the model’s
latent heating profiles are nudged to rainfall rates derived from lightning observations
combined with Special Sensor Microwave/Imager (SSM/I) rain-rate field and infrared
(IR) brightness temperatures [14]. On this basis, a more realistic relationship between the
convective rainfall rate and lightning rate was considered [15] and was implemented in the
Kain-Fritsch (KF) convective parameterization scheme (CPS) [16]. The low levels of the
atmosphere where lightning occurs are warmed based on parcel theory [17].

In the dynamic field adjustment schemes, based on two functional relationships be-
tween the frequency of lightning and cloud top height, cloud top height and maximum
updraft, the maximum vertical velocity-driven lightning data are assimilated into the model
through a nudging technique or the ensemble square root filter (EnSRF) method [18–21].
This method spreads the spatial distribution of positive vertical velocities and thus en-
hances the spatial distribution of severe rainfall [20]. Although it is possible to establish
observation operators between temperature or vertical velocity and lightning through
empirical relationships, such relationships are limited by local climate characteristics and
differences in convective processes. Therefore, it is very difficult to directly adjust thermal
and dynamic fields through lightning data.

In the mass field adjustment schemes, there are three main types of adjustment
variables for lightning data. The first type uses water vapor as the adjustment variable.
Papadopoulos et al. and Mansell et al. used lightning data to adjust the relative humidity
profile or water vapor content in the cumulus parameterization scheme to activate convec-
tion [22–24]. Subsequently, a similar approach was implemented in different model [25,26].
Fierro et al. increased water vapor mass at the observed lightning locations through a
continuous nudging function [27–30] or created pseudo-observations for water vapor mass
based on flash-density metrics derived from lightning data which are then assimilated
within a three-dimensional variational (3DVAR) system [31,32]. These adjustment schemes
effectively improve the model forecast skill for convective precipitation [33–36]. The second
type of mass field adjustment is based on in-cloud charging physics, which seeks to estab-
lish a relationship between ice-phase particles and flash density, and then assimilate these
via nudging or ensemble assimilation methods [37–43]. Finally, the third type is based on
the empirical relationship between lightning and radar reflectivity. The flash density is
converted into three-dimensional radar reflectivity fields, which are then assimilated into
the model [44–47].

When assimilating lightning data through proxy radar reflectivity, there are inher-
ent errors associated with this conversion, which are dependent on the performance of
the radar data assimilation (RDA) system. Observational and laboratory studies have
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long shown an unambiguous association between ice-phase particles/graupel content and
lightning [48–50]. However, ice particles or graupel have less impact on the background
water vapor environment. The innovation of ice particles and graupel does not persist
long enough and generally induces downdrafts instead of sustaining updrafts. Current
studies have shown that LDA through water vapor can help trigger the observed con-
vection earlier and also better maintain longer-lived convective systems [27–32,35]. The
assimilation scheme based on water vapor, however, also features important shortcomings.
First, lightning data can only determine the location of deep, mixed-phase convection.
Therefore, the three-dimensional pseudo-observation of water vapor derived from light-
ning is primarily confined in the vertical. Second, when convection is activated by the
local increases in water vapor mass in the background field, if the local increase remains
small, longer spin-up time is required. The converse occurs for large water vapor mass
adjustments in addition to the exacerbation of any existing wet biases. Third, the water
vapor increment in the analysis field must require suitable simultaneous adjustments in
the thermal and dynamic fields.

Liu et al. [35] proposed to use the cloud top height as the upper limit for the adjustment
of water vapor while Fierro et al. [32] confine the adjustments from the lifted condensation
level up to 3 km above it. In this study, we attempt addressing the second and third limi-
tations by using the dual-resolution hybrid three-dimensional ensemble-variational data
assimilation (3DEnVAR) method [51–53] with multivariant flow-dependent background
error covariances combined with radar data in the lightning assimilation procedure.

Many studies have underscored the benefits of the assimilation of radar data for
shorter term forecast improvements at the cloud-scale [54–60]. Gao et al. proposed a
method of dual-Doppler radar analysis based on a variational approach. Based on radar
information, the circulation inside and around the storms is well analyzed [54]. Sun et al.
applied the four-dimensional variational data assimilation (4DVAR) technique to a cloud-
scale model and demonstrated that the variational analysis system is able to retrieve the
detailed structure of wind, thermodynamics, and microphysics using either dual-Doppler
or single-Doppler information [55]. In addition, the method based on ensemble Kalman
Filter assimilation of radar data is developed [56,57]. In a variational framework, Lai
et al. assimilated pseudo-water-vapor and potential-temperature-driven radar data to
improve the precipitation forecast [58,59]. Radar radial velocity observations contain
information about the horizontal wind field component, whereas radar reflectivity and
dual-polarization observations provide information about the distribution of various kinds
of hydrometeors. The radial velocity and hydrometeor information provided by radar data
can partially offset the lack of dynamic and hydrometeors information in the water-vapor-
based LDA and reduce the spin-up time. Additionally, the assimilation of radar data (i.e.,
zero reflectivity) can help reduce spurious hydrometeor information in the background
field. The assimilation of radar data into convective-scale NWPs also has its own limitations
because of the lack of water vapor information. The pseudo-observation of water vapor
derived from lightning data is useful to solve the limitations. With the ongoing expansions
of satellite observation networks, the assimilation of lightning data has gradually played a
more important role in NWP. Therefore, the performance of combined radar and lightning
data assimilation is also examined here for its impact on strong convection forecasts.

For convective-scale data assimilation, many studies have demonstrated the notable
benefits of the use of flow-dependent background error covariance statistics over stationary
and isotropic background error covariances. The more advanced 4DVAR with the flow-
dependent background error covariance through the forward and backward models cannot
be easily applied to the convective-scale problems due to its high computational cost and
nonlinearity of microphysics process. The ensemble Kalman filter method can fully derive
flow-dependent background error covariances from ensemble forecasts. Often, however,
the ensemble sampling size is much smaller than the actual degrees of freedom needed to
resolve the covariance statistics at the cloud-scale. To mitigate these drawbacks (e.g., com-
putational cost) and simultaneously benefit from flow-dependent information, Gao et al.
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developed a hybrid 3DEnVAR system with multivariate flow-dependent background error
covariance [51,52]. The algorithm uses the extended control variable approach to combine
the static and ensemble-derived flow-dependent background error covariance to form a
hybrid covariance. This hybrid covariance not only affects the assimilation variable but
also communicates the observation information to other variables.

Based on the above considerations, it is possible to alleviate some of the shortcom-
ings in the LDA by combining radar observation information and using more advanced
assimilation methods with flow-dependent background error covariances. A high-impact
severe convective case influenced by the Meiyu front in the middle and lower reaches of
the Yangtze River is used to examine the impact of the assimilation of spaceborne total
lightning data (cloud-to-ground plus intracloud flashes) and radar data with a 3DEnVAR
system. To provide a clearer assessment of the effects of different datasets and assimilation
methods in the analysis field, a set of single-analysis experiments was performed first. The
ability of the combined assimilation of radar and lightning data in high-frequency cycling
assimilation was also evaluated by a set of cycling analysis experiments.

In Section 2, data and assimilation methods are briefly described. In Section 3, the
experimental design and model description are introduced. The results and summary
discussion are presented in Sections 4 and 5, respectively.

2. Data and Methods
2.1. Lightning Data

In this work, LMI data from the FY-4A geostationary satellite were used for the LDA.
The LMI can continuously monitor total lightning in 1-min intervals and with a grid
spacing of 7.8 km at nadir. The LMI provides three product levels, including the event,
group, and flash products. In this study, the LMI event product is used because it is the
basic output unit for lightning detection and can better depict the spatial propagation of
lightning flashes and, hence, electrified storm regions [10,61]. A quality control procedure
is used to remove events with non-good quality flag and isolated events with no adjacent
detected lightning pixels. The same procedure as Liu et al. [35] was used for creating
pseudo-observations of water vapor. In single-analysis experiments, the lightning events
frequency was first accumulated over a 1 h period, centered on the analysis time. In
the cycling analysis experiments, the lightning events frequency was accumulated over
15 min before the analysis time. When the observed 15-min lightning events frequency
per grid cell exceeded zero, the relative humidity from the background in the column
associated with the grid cell was adjusted to 90% only if the background value did not
already exceed 90%. In other words, if the relative humidity was already greater than or
equal to 90% in that column, no adjustments were made. The upper limit of the adjustment
of relative humidity was determined using the cloud top height from FY-4A. The calculated
lifting condensation level from the background field was approximated as the bottom
limit of the adjustment similar to Fierro et al. [31]. The relative humidity of all grid points
formed a three-dimensional pseudo-observation field that was used to assimilate lightning
information. Because relative humidity is proportional to the ratio between water vapor
and the saturation water vapor, pseudo-observation of water vapor of lightning data can
be derived equivalently via relative humidity.

2.2. Radar Data

A total of 37 radars were used in this study. These radars cover all the main storms
during the target analysis period. The frequency of radar data is approximated to 6 min,
and the radar data closest to the analysis time are assimilated. Prior to assimilation,
the radar data were quality controlled; this procedure includes removing radar clutter
and non-meteorological reflectivity, the removal of isolated points, and de-aliasing radial
velocity [62,63]. After quality control, the radar data were interpolated to the model grid.
For reflectivity, the largest value was used in the grid points where data from multiple
radars overlap.
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2.3. Data Assimilation Methods

In this study, the 3DVAR and dual-resolution hybrid 3DEnVAR methods were used to
assimilate lightning and radar data (radial velocity and reflectivity factor). Both assimila-
tion methods have shown promise at convective scales for the assimilation of lightning
and/or radar data [64–68]. The two assimilation methods are briefly described in the
following section.

2.3.1. DVAR Method

Details of the 3DVAR scheme used in this work follow Gao et al. [66,67]. The cost
function is defined as follows:

J(x) =
1
2

(
x − xb

)T
B−1

(
x − xb

)
+

1
2
[H(x)− yo]TR−1[H(x)− yo] + Jc(x), (1)

where x is the state vector, and xb is the background state vectors, respectively; yo is
the observation vector; B and R are the background and observation error covariance
metrics, respectively; H is the observation operator; and the term Jc(x) is any penalty or
dynamic equation constraint term. The divergence equation constraint was used here.
Following Gao et al. [51], an alternative control variable v, in which ∆x = B

1
2 v =

(
x − xb

)
,

was defined. Through this variable transform, the cost function was converted into the
following preconditioned incremental form:

J(v) =
1
2

vTv +
1
2

[
H
(

xb + ∆x
)
− yo

]T
R−1

[
H
(

xb + ∆x
)
− yo

]
+ Jc(v), (2)

There are six variables for the analysis vector x, including the three wind components
(u, v, and w), potential temperature (θ), pressure (p), and water vapor mixing ratio (qv).
To assimilate reflectivity directly in the variational framework, hydrometeor-related model
variables, including the mixing ratios for rainwater qr, snow qs, and hail qh, are added to
the analysis vector.

2.3.2. Dual-Resolution Hybrid 3DEnVAR Method

In the hybrid 3DEnVAR method, the augmentation of state vector w was added to the
preconditioned incremental 3DVAR cost function in (2), yielding to:

J =
1
2

vTv +
1
2

wTw +
1
2

[
H
(

xb + ∆x
)
− yo

]T
R−1

[
H
(

xb + ∆x
)
− yo

]
+ Jc, (3)

where:
∆x = ∆x1 + ∆x2 = (β1B)

1
2 v + (β2P)

1
2 w, (4)

∆x is the analysis increment of the state of vector x, B is the static 3DVAR background
error covariance matrix, and P is the covariance matrix derived from the ensemble. To
conserve the total background error, two positive coefficients β1 and β2 were used to
determine the relative weights for the static background error covariance and the ensemble
error covariance, assuming:

β1 + β2 = 1, (5)

This approach to combining two covariance matrices to form a hybrid covariance
provides flexibility since it allows for different relative contributions from the two covari-
ance matrices. When β1 = 1, only the static 3DVAR background error covariance matrix is
used for the assimilation (i.e., pure 3DVAR method), and, conversely, when β2 = 1, a pure
ensemble-derived covariance matrix is used.

Smaller ensemble sizes can lead to underdispersion and filter divergence. A larger
ensemble helps improve the background error covariance estimation, but at a higher
computational cost. To reduce the computational cost and create a larger ensemble, lower-
resolution ensemble forecasts were used to estimate the background error covariance of
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higher-resolution deterministic forecasts. This dual-resolution method is developed and
implemented well in real-time analyses and forecast systems [53,65].

3. Experimental Design and Model Description
3.1. Experimental Design

A severe convective event associated with the Meiyu front on 30 June 2018, which
occurred in the middle and lower reaches of the Yangtze River, was selected to examine
the performance of the lightning and radar data assimilation (LRDA). The description of
this severe convective event can be found in Liu et al. [35]. All the experiments examined
herein, including a control experiment and multiple assimilation experiments, are listed in
Table 1. As its name indicates, the control experiment (labeled CTL) does not assimilate any
data. All assimilation experiments were performed using either single or multiple analysis
cycles. A set of single-analysis experiments help provide a clearer assessment of the effects
of 3DVAR and hybrid 3DEnVAR methods when assimilating lightning and/or radar data
in the analysis field. The single-analysis experiments were performed at 0000 UTC on
30 June. The high-frequency cycling analysis experiments were designed to evaluate the
ability of the combined assimilation of radar and lightning data to depict the evolution and
movement of the convective-scale event of interest. The cycling assimilation experiments
consist of successive analyses from 0000 UTC to 0100 UTC on 30June in 15 min intervals. In
the single and cycling analysis experiments described above, the hybrid 3DEnVAR method
use β1 = 0.4, β2 = 0.6, which were determine based on trial and error. To test the effect of
different percentages of the static covariance matrix and ensemble covariance matrix in
the hybrid method on the assimilation results, two additional assimilation experiments
with different coefficients (cf., Table 1) for the hybrid 3DEnVAR method of assimilating
the combined lightning and radar data were performed and only the forecast results
were evaluated.

Table 1. Abbreviations used for the experiments and descriptions of the experiments. All assimila-
tion experiments were performed using single and cycling analysis, respectively. Single-analysis
experiments were at 0000 UTC on 30 June, and cycling analysis experiments were performed from
0000 to 0100 UTC on 30 June with 15 min frequency. In single-analysis experiments, lightning fre-
quency was accumulated from 2300 UTC on 29 June to 0030 UTC on 30 June, and in cycling analysis
experiments, lightning frequency was accumulated for the 15 minutes before the analysis moment.
To test the different hybrid coefficients, two sets of hybrid coefficients were used to assimilate the
combined lightning and radar data. The label “cov06” represents β1 = 0.4 and β2 = 0.6, label “cov08”
represents β1 = 0.2 and β2 = 0.8, and the label “cov10” represents β1 = 0.0 and β2 = 1.0.

Experiments Data Assimilated Data Assimilation Methods

CTL None None

LDA_3DVAR
FY-4A LMI

3DVAR method
(β1 = 1.0, β2 = 0.0)

LDA_Hybrid_cov06 Hybrid 3DEnVAR method,
(β1 = 0.4, β2 = 0.6)

RDA_3DVAR Radar reflectivity and
radial velocity

3DVAR method
(β1 = 1.0, β2 = 0.0)

RDA_Hybrid_cov06 Hybrid 3DEnVAR method,
(β1 = 0.4, β2 = 0.6)

LRDA_3DVAR

FY-4A LMI, radar reflectivity,
and radial velocity

3DVAR method
(β1 = 1.0, β2 = 0.0)

LRDA_Hybrid_cov06 Hybrid 3DEnVAR method,
(β1 = 0.4, β2 = 0.6)

LRDA_Hybrid_cov08 Hybrid 3DEnVAR method,
(β1 = 0.2, β2 = 0.8)

LRDA_Hybrid_cov10 Hybrid 3DEnVAR method,
(β1 = 0.0, β2 = 1.0)
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3.2. Model Description

The numerical model used for this study is the three-dimensional compressible non-
hydrostatic Weather Research and Forecasting model version 3.7.1 (WRF3.7.1). The higher-
resolution deterministic forecast uses a grid spacing of 3 km (Figure 1b) and 50 terrain-
following eta levels from the surface extending to an assumed model top of 50 hPa. The
higher-resolution deterministic forecast is derived from Global Forecast System (GFS)
datasets with 6 h intervals and a 0.25◦ grid spacing. The main physics schemes used for
the deterministic forecasts include the Thompson microphysical parameterization [69],
the Dudhia scheme for shortwave radiation [70], and the Rapid Radiative Transfer Model
scheme (RRTM) for longwave radiation [71], the Yonsei University planetary boundary
layer scheme [72], and the unified Noah land surface model [73].

Figure 1. The little global map (a) and configuration of the WRF model domain with a grid spacing
of 3 km (b). The colors represent model terrain heights. The abbreviations for the Henan, Anhui,
Hubei, Chongqing, Guizhou, Hunan, Jiangxi, Zhejiang, and Fujian Provinces are HeN, AH, HuB,
CQ, GZ, HuN, JX, ZJ, and FJ, respectively.

The lower-resolution ensemble members have a horizontal grid spacing of 9 km. The
lower-resolution model domain encompasses the higher-resolution deterministic forecast
model domain. The initial and boundary conditions of the lower-resolution ensemble
members were provided by the 21 ensemble members from the National Centers for Envi-
ronmental Prediction (NCEP) Global Ensemble Forecast System (GEFS) with 6 h intervals
and a 1.0◦ grid spacing. To expand the ensemble sizes and improve spread, three groups of
physical parameterization schemes are used to generate a total of 21 × 3 ensemble mem-
bers. The different sets of microphysical, radiation, planetary boundary layer, and land
surface model schemes are used for each group. To ensure that each ensemble includes
convective scale information, the KF cumulus parameterization scheme was used for all
members. All ensemble members were initialized at 1800 UTC on 29 June 2018 and inte-
grated until 0600 UTC on 30 June. In this study, the 63 members of the ensemble did not
assimilate any observations.

4. Results

In this severe convective event, there were two independent convective cells in the
central part of Hubei Province at 0000 UTC on 30 June, which later merged into a mesoscale
convection system at 0300 UTC. At 0000 UTC, a large amount of lightning occurred
in the two convection cells [35]. The analysis results including radar reflectivity and
the increments of wind, water vapor and hydrometer variables from the single-analysis
experiments are shown and described in this section. The forecast results including radar
reflectivity and accumulated precipitation from the single and cycling analysis experiments
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were evaluated. The benefit of using the flow-dependent background error covariances on
the analysis will be highlighted.

4.1. Analysis Field of Single-analysis Experiments

In the 3DVAR method, the analysis field is the state vector that minimizes the cost
function (1). During the cost function minimization procedure, the iteration is stopped once
the gradient of the cost function no longer decreases (i.e., converge to a minimum value).
The total cost function is the sum of the cost of each individual term in (3). In this study,
the single cost term includes the background field term, six variables (u, v, w, θ, p, qv),
the divergence constraint term, and hydrometeor-related model variables to assimilate
radar reflectivity. Generally, there are fewer conventional observations than radar ob-
servations. In the same domain, the conventional observation points are notably more
sparsely distributed than the radar observation points that are interpolated into the model
grid. This will cause the total cost function to always be dominated by the radar data
term when other observations and radar data are assimilated simultaneously. Figure 2
shows the total cost function and summation of the gradient norm as a function of the
number of iterations for all single-analysis experiments. When assimilating radar data,
the total cost function is much larger than when only assimilating lightning-derived water
vapor pseudo-observations. In the experiments of this study, to ensure that the minimum
cost function is attained, 200 iterations are used. In Figure 2, it can be seen that after
approximately 120 iterations, the curve of each experimental cost function converges well,
and that the gradient drops notably (by 90% on average). In the experiment assimilating
pseudo-observations for water vapor in the hybrid 3DEnVAR method, the gradient no
longer drops after iteration 76, and the minimization procedure is halted automatically.
In the next section, the detailed results of the analysis are presented, including radar
reflectivity, wind field, water vapor, and hydrometers.

4.1.1. Radar Reflectivity and Wind Field

Figure 3 shows the maximum reflectivity and horizontal wind at the single-analysis
time (0000 UTC). The maximum reflectivity of the two convective cells exceeds 45 dBZ
in the central and southeast regions of Hubei, and there is also a large area of strong
reflectivity at the junction of the Anhui and Jiangxi provinces (Figure 3a). The control run
fails to simulate the reflectivity in southeast Hubei and southeast Anhui (Figure 3b). In
the LDA experiments, the reflectivity analyzed by the 3DVAR method is consistent with
the background field (Figure 3c). In LDA_Hybrid_cov06, weaker reflectivity values are
analyzed in southeastern Hubei. This underestimation of reflectivity by the 3DVAR relative
to the observations is even more pronounced in southeastern Anhui, where the analysis
increment of reflectivity barely exceeds 30 dBZ (Figure 3d). The analysis of reflectivity
relies heavily on radar data because the assimilation of lightning data has very little effect
on the hydrometeor variables (3DVAR no effect). Therefore, the reflectivity analysis fields
of the RDA and LRDA experiments exhibit similar patterns and remain in reasonable
agreement with the observations (Figure 3e–h). Additionally, the spurious reflectivity
echoes present in the background in CTL over northern Hunan and western Hubei are
suppressed (Figure 3e–h).

Whether the 3DVAR or hybrid 3DEnVAR assimilation methods are used, the reflectiv-
ity information of the analysis field can be well-analyzed when radar data are assimilated
alone or combined with the lightning-derived pseudo-observations for water vapor. Con-
comitantly, because of the assimilation of radar radial wind information, some appropriate
adjustments were made to the wind field in the analysis after assimilating the radar data.
In severe convection forecasting, a better reflectivity analysis field will correspond to a
shorter spin-up time. The combination of lightning and radar data can yield to a reflectivity
analysis field more consistent with the observations and partially alleviate the problem of a
poor reflectivity analysis when only assimilating lightning data. However, for areas lacking
radar data coverage, obtaining better-analyzed reflectivity (hydrometers) relies on other
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observation data, such as lightning data. In the experiment assimilating lightning-derived
water vapor, improved reflectivity analyses are obtained through the hybrid 3DEnVAR
method in southeastern Hubei and southeastern Anhui where radar observations are
scarce (Figure 3d).

Figure 2. The total cost function and summation of gradient norm as a function of the number of
iterations in single-analysis experiments. The red solid line is the cost function (left Y-axis), and the
blue dashed line is the gradient norm (right Y-axis). (a,b) Lightning data assimilation by 3DVAR
(LDA_3DVAR) and hybrid 3DEnVAR (LDA_Hybrid_cov06), (c,d) radar data assimilation by 3DVAR
(RDA_3DVAR) and hybrid 3DEnVAR (RDA_Hybrid_cov06), and (e,f) the combined lightning and
radar data assimilation by 3DVAR (LRDA_3DVAR) and hybrid 3DEnVAR (LRDA_Hybrid_cov06).

Figure 4 shows the horizontal and vertical cross-sections of increments of wind vectors
and vertical velocity. The assimilation of the radar radial wind data provides an adjustment
in the wind field. At the location where strong reflectivity values are observed on the
border between the Anhui and Jiangxi provinces, convergence enhancement in the hori-
zontal direction can be clearly noted (Figure 4a,c) along with well-defined vertical motions
(Figure 4d,f). The wind field adjustments in the LRDA experiments are very similar to
those in the RDA experiments (not shown). In particular, the adjustment of the wind
field on the boundary between the Anhui and Jiangxi provinces is smaller when using the
hybrid 3DEnVAR method relative to pure 3DVAR. When only assimilating the lightning-
derived water vapor data using the pure 3DVAR method, the wind field could not be as
accurately adjusted compared to the hybrid 3DEnVAR. In the LDA experiment using the
hybrid 3DEnVAR method, the horizontal wind field in the analysis field was adjusted
more accurately (Figure 4b,e). The adjustment of the wind field is important to trigger
the observed convection earlier and to maintain. Wind field adjustments, however, will
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occasionally trigger spurious cells, and overcoming this problem requires the assimilation
of more information about the wind and a more detailed analysis of the wind field.

Figure 3. The observed maximum radar reflectivity (MaxRadRef) and analyzed maximum reflec-
tivity (MaxRef) horizontal wind vectors at z = 4 km at 0000 UTC on 30 June 2018 (analysis time).
(a) Observed maximum radar reflectivity interpolated onto the 3 km simulation domain, (b) control
run (CTL), and for single-analysis experiments: (c,d) lightning data assimilation by 3DVAR and
hybrid 3DEnVAR, (e,f) radar data assimilation by 3DVAR and hybrid 3DEnVAR, (g,h) and the com-
bined lightning and radar data assimilation by 3DVAR and hybrid 3DEnVAR. The white background
area is the range of radar scanning in (a). The black line AB in (a) denotes the locations of the vertical
cross-sections for subsequent figures.

Figure 4. Horizontal increments of vertical velocity (shaded contours) and wind vector (black vector
arrows) from single-analysis experiments at z = 4 km (a–c) and vertical-cross sections of increments
of vertical velocity and wind vector (e–f) at 0000 UTC 30 June 2018 (analysis time) along line AB
in (a). The line AB in (a) is the same position as the line AB in Figure 3a. Lightning data assimilation
by hybrid 3DEnVAR (b,e), radar data assimilation by 3DVAR (a,d) and hybrid 3DEnVAR (c,f). The
black lines AB in (a) denote the locations of the vertical cross-sections for (d–f).
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4.1.2. Water Vapor and Hydrometers

The analysis increments of qv between eta level 0–15 (15th eta level is approximately
5.7 km in height) were summed and shown in Figure 5a–f. In the LDA experiments, a
positive qv adjustment is produced at the location where lightning occurred with the hybrid
3DEnVAR method producing the largest qv increase (Figure 5d), followed by the 3DVAR
method (Figure 5a). For the same number of iterations, the hybrid 3DEnVAR method
yields a smaller total cost function value than 3DVAR when assimilating only the lightning-
derived water vapor and, therefore, generates the largest qv increment. The qv increment
cannot be obtained when assimilating the radar data directly using the 3DVAR method
(Figure 5b), but a small adjustment of qv occurs in the analysis field when assimilating radar
data through the hybrid 3DEnVAR method (Figure 5e). Because of the relatively larger
number of data points contained in volumetric radar scans relative to two-dimensional
flash density fields, the cost function of the radar data is much larger than that of the
lightning pseudo-water vapor, and, thus, dominates the total cost function. In the LRDA
experiments, the qv increment is smaller than in the LDA experiments.

Figure 5. The single-analysis increments of water vapor mixing ratio (qv) from 0 eta level to 15
eta level (a–f) were summed; graupel mixing ratio (qg) at 500 hPa (g,j), snow mixing ratio (qs) at
500 hPa (h,k), and rain mixing ratio (qr) at 700 hPa (i,l) at 0000 UTC 30 June 2018 (analysis time).
(a) Lightning data assimilation by 3DVAR. (d,g–i) Lightning data assimilation by hybrid 3DEnVAR.
(b,e) Radar data assimilation by 3DVAR and hybrid 3DEnVAR. (c) The combined lightning and radar
data assimilation by 3DVAR, and (f,j–l) uses hybrid 3DEnVAR.
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Lightning data can provide water vapor information for convective development.
However, there is large uncertainty in the empirical pseudo-observations for water vapor
derived from the lightning data. To prevent larger errors from pseudo-observations being
introduced into the analysis field, it is always desired that a minimum number of unreliable
pseudo-observations are used to derive the analysis. When there is only a small increase
in qv, it is necessary to rely on hydrometeor information to trigger convection. When
radar data are assimilated, the analysis consists of positive adjustments in the hydrometeor
fields (Figure 5j–l). The increase in hydrometeor mass allows for an earlier development
of convection in the analysis and, hence, a reduction in the spin-up time. The hybrid
3DEnVAR method analysis exhibits a small increment in hydrometeor mass over the
northern portion of the Jiangxi province, while the 3DVAR method does not produce any
hydrometeor increments (Figure 5g–i). After assimilating radar reflectivity data, a large
negative increment of hydrometeors in western Hubei is noted, which indicates that the
radar data (zero reflectivity) is able to partially suppress some of the spurious convection
in the background field.

To further illustrate the changes in water vapor and hydrometeors, the vertical cross-
sections of the analysis increments of qv and hydrometeors are shown (Figure 6). In the
LDA_3DVAR and LRDA_3DVAR experiments, the qv increments maintain a consistent
change in the vertical direction, with larger increments occurring at 600 and 850 hPa in
the LDA_Hybrid_cov06 and LRDA_Hybrid_cov06 experiments. After assimilating radar
reflectivity, positive qs increments of about 0.1 g/kg are produced above 500 hPa. At about
700 hPa, positive graupel mixing ratio (qg) and qr increments of 0.1 and 0.3–0.6 g/kg are
also seen, respectively.

Figure 6. Vertical cross-sections of analysis increments of qv (blue shaded contour lines), qg (dark
orchid contour lines), qs (orange contour lines) and qr (forest green contour lines) from single-analysis
experiments at 0000 UTC 30 June 2018 (analysis time) along line AB in Figure 3a. (a,d) Lightning
data assimilation by 3DVAR and hybrid 3DEnVAR, (b,e) radar data assimilation by 3DVAR and
hybrid 3DEnVAR, and (c,f) the combined lightning and radar data assimilation by 3DVAR and
hybrid 3DEnVAR.

4.2. Forecast Field

In this section, the forecasts of reflectivity and accumulated precipitation from the
single and the multiple (cycling) analysis experiments were evaluated. To provide a more
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complete view of the precipitation forecast performance, the hourly precipitation product
combined with automatic weather stations precipitation observations in China and the
CMORPH (Climate Prediction Center morphing method) satellite inversion precipitation
product provided by the Chinese National Meteorological Information Center (NMIC)
was used to calculate the precipitation forecast skill scores, including the equitable threat
score (ETS) and categorical performance diagrams [74–76]. ETS = 1 indicates a perfect
forecast while ETS = 0 stands for no forecast skill. The performance diagrams conveniently
combine the information from the frequency bias, the probability of detection (POD), the
critical success index (CSI), and the success ratio (one minus the false alarm rate). All score
metrics were computed for neighborhood radii of 9 km (i.e., three grid points). The three
thresholds (1, 5 and 10 mm/h) were used to indicate the occurrence of precipitation, heavy
precipitation, and severe heavy precipitation, respectively.

4.2.1. The Single-analysis Experiments

Although CTL was arguably able to forecast the observed stronger reflectivity echoes
in the central part of the Hubei Province in the 3 h forecast, some deviation from the
observations can be seen in terms of position and intensity; these are located further to
the northwest and are overall weaker than observed. A reflectivity exceeding 30 dBZ
was observed in the western part of the Zhejiang province, but CTL failed to resolve it
(Figure 7b). All DA experiments show a positive impact on the forecasting of composite
radar reflectivity (Figure 7c–j). In the LDA experiments, the observed high-reflectivity
areas in central Hubei were reasonably well-forecasted, but spurious cells are still present
in the western portion of the Hubei Province (Figure 7c–f). Due to the lack of adjustment of
the qv fields in RDA, the updated hydrometeor in the forecast field were shorter-lived. The
improvements in the RDA experiment 3 h forecast compared with CTL were not obvious
(Figure 7d–g). The LRDA experiments produced better forecast performances for reflectiv-
ity. The spurious cells seen in the LDA experiments in western Zhejiang are weaker in the
LRDA experiments (Figure 7e,h–j), which also successfully forecasted the high-reflectivity
region in central Hubei. In LRDA, the hybrid 3DEnVAR method reduced the spurious
cells in western Hubei (Figure 7h–j). The reduction in spurious cells is more obvious in
LRDA_Hybrid_cov06 compared to LRDA_Hybird_cov08 or LRDA_Hybird_cov10.

Figure 8 shows horizontal cross-sections of observed and forecasted 6 h accumulated
precipitation from the single-analysis experiments. From 0000 to 0600 UTC, there was a
heavy rainfall band located in the central and southeastern of Hubei with accumulated pre-
cipitation exceeding 50 mm/6 h (Figure 8a). CTL was able to simulate a high-precipitation
center in western Hubei but could not forecast the precipitation in southeastern Hubei
(Figure 8b). After assimilating lightning, the observed precipitation band was better re-
solved but with a slight displacement and magnitude bias (Figure 8c,f). After assimilating
radar data, the qv increment was small (Figure 5b,e), and the improvement in the 6 h
accumulated precipitation was not obvious (Figure 8d,g). The radar data mainly adjusted
the wind and hydrometeor fields, and there were obvious improvements in the forecasts
for the first 1 to 2 h (not shown). In the LDA experiments, a stronger precipitation center
than observed is seen at the junction of the Anhui and Zhejiang Provinces. In LRDA
experiments, the increments in qv were overall smaller than that of LDA, which explains
the smaller accumulated rainfall produced there.
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Figure 7. The observed maximum radar reflectivity and forecasted maximum reflectivity and
horizontal wind vectors from single-analysis experiments at 0300 UTC on 30 June 2018 (i.e., 3 h
forecast). (a) Observed maximum radar reflectivity interpolated onto the 3 km simulation domain
(OBS), (b) control run (CTL), lightning (c,f), radar (d,g), and combined lightning and radar data
assimilation (e,h) by 3DVAR (c–e) and hybrid 3DEnVAR (f–h) showed that β1 = 0.4, β2 = 0.6. The
combined lightning and radar data assimilation by hybrid 3DEnVAR (i,j) showed that β1 = 0.2,
β2 = 0.8 and β1 = 0.0, β2 = 1.0, respectively.

The precipitation skill score reflects more intuitively the precipitation forecast per-
formances of different experiments. The ETSs (Figure 9a1–c3) of hourly accumulation
precipitation indicated that either alone or in combination, the assimilation of lightning
and/or radar data had an overall positive contribution to precipitation forecasting. In the
first hour of forecast, the control run had ETS scores less than 0.2 at all thresholds, and
all DA experiments had ETSs scores above or near 0.4. Compared with LDA and RDA,
the combined lightning and radar data assimilation showed a more obvious improvement
in the 6 h accumulated precipitation forecasts. At the 1 mm threshold, the ETS scores of
LDA were less than 0.4. The ETS scores of RDA and LRDA were greater than or close to
0.6. Thanks to the radar-induced adjustments to the hydrometeor fields, the precipitation
scores in the first hour of the LRDA experiment were higher than those of the LDA. In
comparison to all DA experiments, the skill score for the hybrid 3DEnVAR method was
higher than that of the 3DVAR method, except for the LRDA_Hybrid_cov10. The skill
score for the first hours in the LRDA_Hybrid_cov10 experiment was worse than those
produce by pure 3DVAR. This suggests that using a purely ensemble-derived covariance
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statistics does not necessarily guarantee a superior forecast skill relative to forecasts using
static background error covariance information. The performance diagrams for the 1 and
3 h forecast hourly accumulated precipitation are shown in Figure 9d1–e3. At the 1 mm
threshold, the probability of detection is near 0.6 and the success ratio is less than 0.8 in
LDA experiments. In RDA and LRDA experiments, the probability of detection is near
0.8 and the success ratio is greater than 0.8. In all experiments in the 1 h forecast, the
LRDA_Hybrid_cov06 produced the highest CSI and POD for accumulated precipitation
at 1 and 5 mm, together with a larger success ratio (Figure 9d1–d2). The forecast skill
gradually decreases with increasing forecast time, and the LRDA_Hybrid_cov06 at 3 h
forecast still produce good skill at 1mm, but the forecast performance at higher thresholds
(i.e., 5 and 10 mm) is low (Figure 9e1–e3).

Figure 8. The observed and forecasted 6 h accumulated precipitation for single-analysis experiments
from 0000 UTC to 0600 UTC on 30 June 2018. (a) Observed precipitation (OBS), (b) control run
(CTL), lightning (c,f), radar (d,g) and the combined lightning and radar data assimilation (e,h) by
3DVAR (c–e) and hybrid 3DEnVAR (f–h) showed that β1 = 0.4, β2 = 0.6. The combined lightning
and radar data assimilation by hybrid 3DEnVAR (i,j) showed that β1 = 0.2, β2 = 0.8 and β1 = 0.0,
β2 = 1.0, respectively.
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Figure 9. The equitable threat score (ETS) (a1–c3) of the forecasted hourly accumulated precipitation
for single-analysis experiments from 0000 UTC to 0600 UTC on 30 June 2018. The performance
diagram (d1–d3,e1–e3) of 1 and 3 h forecast hourly accumulated precipitation for single-analysis ex-
periments from 0000 UTC to 0100 UTC and 0200 UTC to 0300 UTC on 30 June 2018. (a1–a3) The light-
ning data assimilation experiments (LDA), (b1–b3) the radar data assimilation experiments (RDA),
and (c1–c3) the combined lightning and radar data assimilation experiments. (a1,b1,c1,d1,e1) the
1 mm threshold, (a2,b2,c2,d2,e2) the 5 mm threshold, and (a3,b3,c3,d3,e3) the 10 mm threshold. In
each performance diagram plot, the lower-left corner represents no forecast skill and, similarly, the
upper-right corner indicates perfect skill. Purple curves represent the critical success index (CSI),
and the black dashed lines represent the frequency bias. The colored dots show the results for the
experiments with legends shown at the bottom of the figure, the number inside each dot represents
the forecast time in hours.

4.2.2. The Cycling Analysis Experiments

In the single-analysis experiments, one hour’s worth of accumulated lightning data
centered at the analysis time were assimilated in the LDA experiments, which may have a
time representation error due to the relatively large accumulation time of 1 h instead of



Remote Sens. 2021, 13, 3090 17 of 24

10–15 min used for lightning. In the cycling analysis experiments, lightning data accumu-
lated 15-min prior to the analysis time, were assimilated during each cycle. In other words,
the 1 h lightning frequency information was ingested in the 3DVAR into four separate
15-min cycles. Figure 10 shows the maximum radar reflectivity for the 3 h forecast in the
cycling analysis experiments. Similar to the results for the single-analysis experiments, the
RDA exhibit overall smaller improvements in the reflectivity fields, with the LDA and the
LRDA producing an overall positive impact on the reflectivity fields over Hubei.

Figure 10. As in Figure 7, but for the cycling analysis experiments at 0400 UTC on 30 June 2018 (i.e.,
3 h forecast). (a) Observed maximum radar reflectivity interpolated onto the 3 km simulation domain
(OBS), (b) control run (CTL), lightning (c,f), radar (d,g) and the combined lightning and radar data
assimilation (e,h) by 3DVAR (c–e) and hybrid 3DEnVAR (f–h) showed that β1 = 0.4, β2 = 0.6. The
combined lightning and radar data assimilation by hybrid 3DEnVAR (i,j) showed that β1 = 0.2,
β2 = 0.8 and β1 = 0.0, β2 = 1.0, respectively.

When examining the forecast results for 6 h accumulated precipitation, the range
and magnitude of precipitation produced by the LDA are larger than those of the other
assimilation tests (Figure 11), which is also consistent with the single-analysis experi-
ments. Compared to the LRDA, the LDA generates a larger increment of water vapor with
each cycling analysis, which amplifies this difference after multiple cycles and therefore
yields to a more pronounced wet bias in the forecast. Similar precipitation forecast results
were seen between LRDA_Hybrid_cov06 and LRDA_Hybrid_cov08, but the differences
in LRDA_Hybrid_cov10 are more obvious. There are many unobserved heavy precipi-
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tation points in the LRDA_Hybrid_cov10 forecast (Figure 11j) scattered throughout the
domain. Overall, the hourly rainfall forecast skill of the cycling analysis experiments was
superior to those using a single-analysis (Figure 12). Four hours before the forecast, the
ETSs score in the LDA and LRDA cycling analysis experiments occasionally reached or
exceeded 0.3 at 1 mm (Figure 12a1,c1) and 5mm (Figure 12a2,c2). In the 1mm threshold
performance diagram, the LRDA produced the highest success ratio and POD in the 1 h
forecast (Figure 12d1). In the 3 forecast, both LDA and LRDA produced higher POD than
RDA (Figure 12e1). The combination of both pseudo-observations for water vapor derived
from the lightning and the volumetric radar information is crucial to improve precipitation
forecast in the early hours. The precipitation forecast in the following hours is found to be
dependent on the pseudo-observations for water vapor.

Figure 11. As in Figure 8, but for the cycling analysis experiments from 0100 UTC to 0700
UTC on 30 June 2018. (a) Observed precipitation (OBS), (b) control run (CTL), (b) control run
(CTL), lightning (c,f), radar (d,g) and the combined lightning and radar data assimilation (e,h)
by 3DVAR (c–e) and hybrid 3DEnVAR (f–h) showed that β1 = 0.4, β2 = 0.6. The combined lightning
and radar data assimilation by hybrid 3DEnVAR (i,j) showed that β1 = 0.2, β2 = 0.8 and β1 = 0.0,
β2 = 1.0, respectively.
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Figure 12. As in Figure 9, but for the cycling analysis experiments. (a1–a3) the lightning data
assimilation experiments (LDA), (b1–b3) the radar data assimilation experiments (RDA), (c1–c3) the
combined lightning and radar data assimilation experiments. (a1,b1,c1,d1,e1) the 1 mm threshold,
(a2,b2,c2,d2,e2) the 5 mm threshold, (a3,b3,c3,d3,e3) the 10 mm threshold.

5. Summary and Conclusions

In this work, the performance of combined radar and lightning data assimilation in a
dual-resolution hybrid 3DEnVAR system was examined through a set single and cycling
analysis experiments. The sensitivity of the coefficients of covariance matrix was tested in
assimilation experiments of combined lightning and radar data by the hybrid 3DEnVAR
method. A severe convective event associated with the Meiyu front in the middle and
lower reaches of the Yangtze River was used to evaluate the forecast performance of the
assimilation experiment.

The single-analysis results showed that in the LDA experiments, the increase in qv was
the largest. The RDA experiments showed large hydrometeor and vertical velocity increases
but almost no qv increase. In the LRDA experiments, there was a moderate increase in qv
coupled with large hydrometeor and vertical velocity increases. Since radar reflectivity
provides information about the distribution of various kinds of hydrometeors, water vapor
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increments cannot be obtained when directly assimilating radar reflectivity using the
3DVAR method. The pseudo-water vapor created by the lightning data complements
the lack of water vapor information in the direct assimilation of radar reflectivity well.
In addition, when assimilating the lightning and radar data simultaneously, the radar
information dominates the total cost function, so the water vapor increment obtained
by LRDA is smaller than that of LDA. In the LDA experiments, the maximum radar
reflectivity in the analysis field was almost the same as that in the control experiment. The
maximum reflectivity in the analysis was consistent with the observations in the RDA and
LRDA experiments.

Overall, the results of the cycling analysis experiments are superior to those using
a single-analysis. The precipitation skill score for LDA in the first forecast hour was low,
and there was spurious convection developing at 3 h forecast that led to errors in the 6 h
accumulated precipitation forecast. In the RDA experiments, the precipitation scores in
the first hour of forecast were relatively high, but the improvements in the forecasts of the
3 h and 6 h accumulated precipitation were not obvious. In the LRDA experiments, the
precipitation skill score at 1 h forecast was higher than LDA. Additionally, the 3 h forecast
for reflectivity and 6 h accumulated precipitation remained consistent with the observations.
Additionally, several areas characterized by spurious reflectivity and precipitation were
partially removed. Whether the simulation assimilated lightning or radar data alone or
both, the hybrid 3DEnVAR method showed notable benefits over the 3DVAR method. In
the sensitivity test focusing on the weight given to the ensemble vs static background
error covariances, LRDA_Hybrid_cov06 produced the best forecast skill throughout the
simulation while LRDA_Hybrid_cov08 was overall better at resolving heavy precipitation
in the cycling analysis experiments.

When radar data were added to the LDA, the hydrometeor information provided
by the radar reflectivity helped to trigger convection earlier, which reduced the amount
of water vapor added onto the background and helped reduce the spin-up time. The
radar radial velocity also provided some beneficial contributions to the dynamic field of
the environment (especially in the vertical). Dual-resolution hybrid 3DEnVAR methods
are able to leverage ensemble-based background error covariance statistics with a more
affordable computational cost. This advantage was highlighted in the increase in qv and
hydrometeors in the analysis field, which had more appropriate magnitudes, and in the
dynamic fields of the environment. In the cycling experiments, more observations were
introduced into the analysis field by successive smaller adjustments with observation data
closer in time to that of the analysis. This approach may be more advantageous than
introducing a larger number of observations in one single-analysis.

This work aimed to address several shortcomings involved in the usage of water vapor
as a proxy variable in convective-scale lightning data assimilations. First, the lightning data
from the LMI of the stationary satellite determined the position of lightning-active, deep
mixed-phase convection in the plane view, but when deriving the pseudo-observation for
water vapor, the adjustment range in the vertical direction was determined by an empirical
height/depth. Second, when convection was activated by the local increases in water
vapor mass in the background field, if the local increase remained small, longer spin-up
time was required; if the amount of water vapor added was too large, wet biases could
be exacerbated and could also lead to large areas of spurious storms. Third, in the LDA,
the lack of adjustment to the environmental fields caused the convective system that was
activated in the analysis field to often be short-lived. The first problem was addressed in
Liu et al.’s (2020) work, and the same approach was applied to this work. The FY-4A cloud
top height was used as the upper limit of water vapor adjustment to obtain more accurate
pseudo-observations suitable for different convective modes. The use of the dual-resolution
hybrid 3DEnVAR method with multivariant flow-dependent background error covariances
combined with radar data in the lightning assimilation procedure can alleviate the second
and third limitations well.
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In this work, a hybrid ensemble convective-scale DA method was used to assimilate
observations from multiple sources, which had positive impacts on the analysis. However,
the lower-resolution ensemble members did not assimilate any observations and relied only
on the cumulus parameterization scheme to obtain convective-scale information. Future
work should focus on examining if improvements in the quality of the lower-resolution
ensemble via the assimilation of lightning and/or radar data could help improve the skill
of the higher-resolution deterministic forecasts further. In addition, if the lower-resolution
ensemble assimilates the same observations with the same assimilation methods, could
this lead to under dispersion in the ensembles? This issue will be further studied.
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